MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2018

Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2018

Section One: Calculator-free

(50 Marks)

Question 1 (b)

Solution	
$P_n = -6n + 24$ or $P_n = -6(n - 1) + 18$	
Marking key/mathematical behaviours	Marks
 uses the correct format in the expression for the nth term 	1
identifies rate of change	1

Question 1 (c)

Solution			
$P_n = -0n + 24$ or $P_n = -0(n - 1) + 18$			
-400 = -6n + 24			
-424 = -6n			
$n = 70.7 \text{ so } 71^{\text{st}}$ term which is -402			
Marking key/mathematical behaviours	Marks		
 creates a statement of equivalence 	1		
• solves for <i>n</i> 1			
 identifies value of first term less than -400 	1		

Question 2 (a)

Solution	
(i) 7	
(ii) 15	
Marking key/mathematical behaviours	Marks
identifies number of vertices	1
identifies number of edges	1

Question 2 (b)

Solution

No. It cannot be drawn without the edges crossing			
Marking key/mathematical behaviours	Marks		
identifies if graph is planar	1		
justifies decision	1		

Question 2 (c)

Solution	
It is simple because there are no loops or multiple edges It is connected because all vertices are linked – there are no isolated vertices	
Marking key/mathematical behaviours	Marks
describes why graph is simple	1
describes why graph is connected	1

Question 2 (d)

Solution	
DCPLWNSD 39 km or DCNPLWSD 33 km or DCLPWNSD 50 km (other options also exist)	
Marking key/mathematical behaviours	Marks
identifies a route to fit description	1
determines length of route	1

Question 2 (e)

Solution	
Hamiltonian cycle	
Marking key/mathematical behaviours	Marks
identifies a Hamiltonian cycle	1

Question 2 (f)

Solution	
DNPCLWSD	
Marking key/mathematical behaviours	Marks
identifies a route to fit description	1

Question 3 (a)

Question 3 (b)

Solution	
Wed Th Fr Sat Sun	
$Barb \begin{bmatrix} 0 & 3 & 3 & 3 & 0 \end{bmatrix}$	
Jed 3 0 4 0 3	
Ron 4 4 4 0 0	
Mark 2 0 0 0 3	
$\begin{bmatrix} Lucy \begin{bmatrix} 4 & 1 & 0 & 2 & 0 \end{bmatrix}$	
Marking key/methematical hehavioure	Marka
Marking key/mathematical behaviours	Marks
displays information in matrix form	1

Question 3 (c)

Solution			
Lucy on Wednesday Barb on Saturday	Ron on Thursday Mark on Sunday	Jed on Friday	
18 hours			
Marking key/mathemati	cal behaviours		Marks
 schedules three 	e people correctly		1
 schedules furth 	er two people correctly	у	1
 identifies maxin 	num number of hours		1

Question 3 (d) Solution

Take all numbers from the maximum number in the table

	Wednesday	Thursday	Friday	Saturday
Rachel	10	10	15	0
Nick	15	5	20	10
Penny	10	5	0	15
Sue	0	5	15	10

In each row take the smallest number from each number.

	Wednesday	Thursday	Friday	Saturday
Rachel	10	10	15	0
Nick	10	0	15	5
Penny	10	5	0	15
Sue	0	5	15	10

Assignment is now possible when to cross out all the zeros 4 lines are needed. Assign where there is a zero next to the name,

- Rachel on Saturday 30
- Nick on Thursday 25
- Penny on Friday 30
- Sue on Wednesday 30

Total = 115 cupcakes

Marking key/mathematical behaviours		
 Takes all numbers from the maximum number in the table 	1	
 In each row takes the smallest number from each number. 	1	
 Justifies assignment is possible 	1	

Question 4 (a)

Solution			
$V_{n+1} = 1.06V_n$, $V_0 = 8000$ where V_n represents value and n = number of years passed			
Marking key/mathematical behaviours	Marks		
determines first term	1		
uses correct format for rules			
determines ratio	1		

Question 4 (b)

Solution

(i) \$24 000	
(ii) $V_n = 8000 (1.08)^n$ where V_n represents value and $n =$ number of years pas	sed
Marking key/mathematical behaviours	Marks
 identifies expected value 	1
uses correct format	1
 identifies starting value and rate 	1

Question 4 (c)(d)

Solution			
(c) Monthly rate = $0.06 \div 12 = 0.005$			
(d) increase of \$500			
Marking key/mathematical behaviours	Marks		
identifies monthly interest rate	1		
 identifies approximate change in investment 	1		
specifies the change is a growth	1		

Question 4 (e)

Question 5 (a)

Solution
00101011

		Percentages			
		Preferred sport			
	Area where worker located	Football	Cricket	Netball	
	Office	16	64	20	
	Grounds	20	60	20	
	Deliveries	30	50	20	
/larking	arking key/mathematical behaviours				Marks
•	calculates percentages for office workers				1
 calculates percentages for delivery workers 				1	

Question 5 (b)

Solution	
Sport preferred	
Marking key/mathematical behaviours	Marks
identifies response variable	1

Question 5 (c)

Solution

Regardless of where the worker is located, the majority prefer to watch cricket There is at least 50% in each category

OR

The percentage preferring netball is the same regardless of where the worker is located. It is 20% in each category

Marking key/mathematical behaviours		
describes the association	1	
 uses data from the table to justify conclusion 	1	

Question 6 (a)

Page 8